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2.4. Some probability estimates

Lemma 2.10 (Borel Cantelli lemmas). Let An be events on a common probability
space.

(1) If
∑

n P(An)<∞, then P(An i.o)= 0.
(2) If An are independent and

∑
n P(An)=∞, then P(An i.o)= 1.

PROOF. (1) For any N, P
(
∪∞

n=N An
)
≤ ∑∞

n=N P(An) which goes to zero as
N →∞. Hence P(limsup An)= 0.

(2) For any N < M, P(∪M
n=N An) = 1−∏M

n=N P(Ac
n). Since

∑
n P(An) =∞, it fol-

lows that
∏M

n=N (1−P(An)) ≤ ∏M
n=N e−P(An) → 0, for any fixed N as M →∞.

Hence P
(
∪∞

n=N An
)
= 1 for all N, implying that P(An i.o)= 1. ■

Lemma 2.11 (First and second moment methods). Let X ≥ 0 be a r.v.

(1) (Markov’s inequality a.k.a first moment method) For any t > 0, we
have P(X ≥ t)≤ t−1E[X ].

(2) (Paley-Zygmund inequality a.k.a second moment method) For any
non-negative r.v. X,

(i) P (X > 0)≥
E[X ]2

E[X2]
. (ii) P (X >αE[X ])≥ (1−α)2

E[X ]2

E[X2]
.

PROOF. (1) t1X≥t ≤ X . Positivity of expectations gives the inequality.
(2) E[X ]2 = E[X1X>0]2 ≤ E[X2]E[1X>0] = E[X2]P(X > 0). Hence the first in-

equality follows. The second inequality is similar. Let µ=E[X ]. By Cauchy-
Schwarz, we have E[X1X>αµ]2 ≤E[X2]P(X >αµ). Further, µ=E[X1X<αµ]+
E[X1X>αµ]≤αµ+E[X1X>αµ], whence, E[X1X>αµ]≥ (1−α)µ. Thus,

P(X >αµ)≥
E[X1X>αµ]2

E[X2]
≥ (1−α)2

E[X ]2

E[X2]
. ■

Remark 2.12. Applying these inequalities to other functions of X can give more
information. For example, if X has finite variance, P(|X−E[X ]|≥ t)=P(|X−E[X ]|2 ≥
t2) ≤ t−2Var(X ), which is called Chebyshev’s inequality. Higher the moments that
exist, better the asymptotic tail bounds that we get. For example, if E[eλX ] <∞ for
some λ> 0, we get exponential tail bounds by P(X > t)=P(eλX < eλt)≤ e−λtE[eλX ].

2.5. Applications of first and second moment methods

The first and second moment methods are immensely useful. This is somewhat
surprising, given the very elementary nature of these inequalities, but the following
applications illustrate the ease with which they give interesting results.

Application 1: Borel-Cantelli lemmas: The first B-C lemma follows from Markov’s
inequality. In fact, applied to X =∑∞

k=N 1Ak , Markov’s inequality is the same as the
union bound P(∪∞

k=N Ak)≤∑∞
k=N P(Ak) which is what gave us the first Borel-Cantelli.
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The second is more interesting. Suppose Fix n < m, define X = ∑m
k=n 1Ak . Then

E[X ]=∑m
k=n P(Ak). Also,

E[X2] = E
[

m∑

k=n

m∑

!=n
1Ak 1A!

]

=
m∑

k=n
P(Ak)+

∑

k !=!
P(Ak)P(A!)

≤
(

m∑

k=n
P(Ak)

)2

+
m∑

k=n
P(Ak).

Apply the second moment method to se that for any fixed n, as m →∞,

P(X ≥ 1)≥
(∑m

k=n P(Ak)
)2

(∑m
k=n P(Ak)

)2 +∑m
k=n P(Ak)

= 1

1+
(∑m

k=n P(Ak)
)−1 → 1,

by assumption that
∑

P(Ak) = ∞. This shows that P(∪k≥n Ak) = 1 for any n and
hence P(limsup An)= 1.

Application 2: Coupon collector problem: A bookshelf has (large number) n
books numbered 1,2, . . . ,n. Every night, before going to bed, you pick one of the
books at random to read. The book is replaced in the shelf in the morning. How
many days pass before you have picked up each of the books at least once?

Theorem 2.13. Let Tn denote the number of days till each book is picked at least
once. Then Tn is “concentrated around n logn in a window of size n” by which we
mean that for any sequence θn →∞, we have

P(|Tn −n logn| < nθn)→ 1.

Remark 2.14. In the following proof and many other places, we shall have occasion
to make use of the elementary estimate

(2.1) 1− x ≤ e−x ∀x, 1− x ≥ e−x−x2 ∀|x| < 1
2

.

The first inequality follows by expanding e−x while the second follows by expanding
log(1− x)=−x− x2/2− x3/3− . . . (valid for |x| < 1).

PROOF. Fix an integer t ≥ 1 and let Xt,k be the indicator that the kth book is not
picked up on the first t days. Then, P(Tn > t)=P(St,n ≥ 1) where St,n = Xt,1+. . .+Xt,n.
As E[Xt,k] = (1−1/n)k and E[Xt,k Xt,!] = (1−2/n)k for k != !, we also compute that
thefirst two moments of St,n and use (2.1) to get

ne−
t
n−

t
n2 ≤E[St,n]= n

(
1− 1

n

)t
≤ ne−

t
n .(2.2)

E[S2
t,n]= n

(
1− 1

n

)t
+n(n−1)

(
1− 2

n

)t
≤ ne−

t
n +n(n−1)e−

2t
n .(2.3)

The left inequality on the first line is valid only for n ≥ 2 which we assume.
Now set t = n logn+nθn and apply Markov’s inequality to get

(2.4) P(Tn > n logn+nθn)=P(St,n ≥ 1)≤E[St,n]≤ ne−
n logn+nθn

n ≤ e−θn = o(1).

On the other hand, taking t < n logn− nθn (where we take θn < logn, of course!),
we now apply the second moment method. For any n ≥ 2, by using (2.3) we get
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E[S2
t,n]≤ eθn + e2θn . The first inequality in (2.2) gives E[St,n]≥ eθn− logn−θn

n . Thus,

(2.5) P(Tn > n logn−nθn)=P(St,n ≥ 1)≥
E[St,n]2

E[S2
t,n]

≥ e2θn−2 logn−θn
n

eθn + e2θn
= 1− o(1)

as n →∞. From (2.4) and (2.5), we get the sharp bounds

P (|Tn −n log(n)| > nθn)→ 0 for any θn →∞. ■

Application 3: Branching processes: Consider a Galton-Watson branching pro-
cess with offsprings that are i.i.d ξ. Let Zn be the number of offsprings in the nth
generation. Take Z0 = 1.

Theorem 2.15. (1) If m < 1, then w.p.1, the branching process dies out. That
is P(Zn = 0 for all large n)= 1.

(2) If m > 1, then with positive probability, the branching process survives. That
is P(Zn ≥ 1 for all n)> 0.

PROOF. The proof uses elementary conditioning concepts. By conditioning on
what happens in the (n−1)st generation, we write Zn as a sum of Zn−1 independent
copies of ξ. From this, one can compute that E[Zn|Zn−1] = mZn−1 and if we as-
sume that ξ has variance σ2 we also get Var(Zn|Zn−1) = Zn−1σ

2. Therefore, E[Zn] =
E[E[Zn|Zn−1]] = mE[Zn−1] from which we get E[Zn] = mn. Similarly, from the for-
mula Var(Zn)=E[Var(Zn|Zn−1)]+Var(E[Zn|Zn−1]) we can compute that

Var(Zn) = mn−1σ2 +m2Var(Zn−1)
=

(
mn−1 +mn + . . .+m2n−1)

σ2 (by repeating the argument)

= σ2mn−1 mn+1 −1
m−1

.

(1) By Markov’s inequality, P(Zn > 0)≤E[Zn]= mn → 0. Since the events {Zn >
0} are decreasing, it follows that P(extinction)= 1.

(2) If m = E[ξ] > 1, then as before E[Zn] = mn which increases exponentially.
But that is not enough to guarantee survival. Assuming that ξ has finite
variance σ2, apply the second moment method to write

P(Zn > 0)≥ E[Zn]2

Var(Zn)+E[Zn]2
≥ 1

1+ σ2

m−1

which is a positive number (independent of n). Again, since {Zn > 0} are
decreasing events, we get P(non-extinction)> 0.

The assumption of finite variance of ξ can be removed as follows. Since
E[ξ]= m > 1, we can find A large so that setting η=min{ξ, A}, we still have
E[η] > 1. Clearly, η has finite variance. Therefore, the branching process
with η offspring distribution survives with positive probability. Then, the
original branching process must also survive with positive probability! (A
coupling argument is the best way to deduce the last statement: Run the
original branching process and kill every child after the first A. If inspite
of the violence the population survives, then ...) ■

Remark 2.16. The fundamental result of branching processes also asserts the a.s
extinction for the critical case m = 1. We omit this for now.
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Application 4: How many prime divisors does a number typically have? For
a natural number k, let ν(k) be the number of (distinct) prime divisors of n. What is
the typical size of ν(n) as compared to n? We have to add the word typical, because
if p is a prime number then ν(p) = 1 whereas ν(2×3× . . .× p) = p. Thus there are
arbitrarily large numbers with ν= 1 and also numbers for which ν is as large as we
wish. To give meaning to “typical”, we draw a number at random and look at its
ν-value. As there is no natural way to pick one number at random, the usual way of
making precise what we mean by a “typical number” is as follows.

Formulation: Fix n ≥ 1 and let [n] := {1,2, . . . ,n}. Let µn be the uniform probability
measure on [n], i.e., µn{k} = 1/n for all k ∈ [n]. Then, the function ν : [n] → R can be
considered a random variable, and we can ask about the behaviour of these random
variables. Below, we write En to denote expectation w.r.t µn.

Theorem 2.17 (Hardy, Ramanujan). With the above setting, for any δ> 0, as n →
∞ we have

(2.6) µn

{
k ∈ [n] :

∣∣ ν(k)
loglogn

−1
∣∣> δ

}
→ 0.

PROOF. (Turan). Fix n and for any prime p define X p : [n]→R by X p(k)= 1p|k.
Then, ν(k) = ∑

p≤k
X p(k). We define ψ(k) := ∑

p≤ 4(k
X p(k). Then, ψ(k) ≤ ν(k) ≤ ψ(k)+4

since there can be at most four primes larger than 4(k that divide k. From this, it is
clearly enough to show (2.6) for ψ in place of ν (why?).

We shall need the first two moments of ψ under µn. For this we first note that

En[X p] =
⌊

n
p

⌋

n and En[X p Xq] =
⌊

n
pq

⌋

n . Observe that 1
p − 1

n ≤
⌊

n
p

⌋

n ≤ 1
p and 1

pq − 1
n ≤

⌊
n
pq

⌋

n ≤ 1
pq .

By linearity En[ψ]= ∑

p≤ 4(n
E[X p]= ∑

p≤ 4(n

1
p +O(n− 3

4 ). Similarly

Varn[ψ] =
∑

p≤ 4(n
Var[X p]+

∑

p )=q≤ 4(n
Cov(X p, Xq)

=
∑

p≤ 4(n

(
1
p
− 1

p2 +O(n−1)
)
+

∑

p )=q≤ 4(n
O(n−1)

=
∑

p≤ 4(n

1
p
−

∑

p≤ 4(n

1
p2 +O(n− 1

2 ).

We make use of the following two facts.
∑

p≤ 4(n

1
p ∼ loglogn and

∞∑
p=1

1
p2 <∞. The second

one is obvious, while the first one is not hard and we leave it as exercise. Thus, we
get En[ψ] = loglogn+O(n− 3

4 ) and Varn[ψ] = loglogn+O(1). Thus, by Chebyshev’s
inequality,

µn

{
k ∈ [n] :

∣∣ ψ(k)−En[ψ]
loglogn

∣∣> δ
}
≤ Varn(ψ)
δ2(loglogn)2

=O
(

1
loglogn

)
.

From the asymptotics En[ψ]= loglogn+O(n− 3
4 ) we also get (for n large enough)

µn

{
k ∈ [n] :

∣∣ ψ(k)
loglogn

−1
∣∣> δ

}
≤ Varn(ψ)
δ2(loglogn)2

=O
(

1
loglogn

)
. ■


